硬件层面,也就是所谓的硬件加速, CPU、GPU、FPGA、ASIC。CPU与GPU相比在大数据多任务处理上,肯定GPU更占优势。FPGA与GPU相比,在兼顾了灵活性的基础上,无论是计算能力和功耗性能上都要更强,缺点是性价比太低。ASIC是的,其他的硬件形态都是无法比拟的。
如果熟悉以太坊PoW算法的应该知道,它的算法并不像大饼的算法,算力大小是与内存和带宽正相关,这点上和Aleo的算法很像,所以我们看到在以太坊PoW算法上能做出有竞争力的ASIC芯片机厂商屈指可数!
对比ASIC来说,由于是专用的机器,利用某些技术可以把内存和带宽做的很大,甚至是4090的几十倍,但是成本和功耗却非常低,这就是ASIC的优势。
按照官方的设想和规划未来在Aleo上每天的交易量都是上亿美金的规模,在这样大数据量的要求下,每时每刻都有证明需要被委托出去在极短的时间内完成证明的生产,不可能指望显卡能解决这个问题。就像AI大模型训练一样,早期数据量和参数少的情况下可以用消费级显卡,但是现在更多的都是为AI训练设计的专用芯片和机器。
为什么以太坊或者门罗是抵制ASIC的?看看大饼就知道了,主要是比较低成本的ASIC让以太坊社区预测到了ASIC机器未来可能占领以太坊网络,而以太坊网络开始的共识是PoW,和大饼一样。